US009158786B1

a2 United States Patent 10) Patent No.: US 9,158,786 B1
Walsh et al. (45) Date of Patent: Oct. 13,2015
(54) DATABASE SELECTION SYSTEM AND 6,199,195 Bl 3/2001 Goodwin
METHOD TO AUTOMATICALLY ADJUST A 6,324,693 Bl 11/2001 Brodersen et al.
6,535,868 Bl 3/2003 Galeazzi et al.
DATABASE SCHEMA BASED ON AN INPUT 6,556,088 B2 4/2003 Tsuchida et al.
DATA 6,687,362 Bl 2/2004 Lindquist et al.
6,772,180 Bl 8/2004 Lietal.
(71) Applicants:Sean Walsh, Redwood City, CA (US); 6,834,276 Bl 12/2004 Jensen et al.
Brian Wheeler, Cherry hills, CO (US); g,ggi,‘;ig gé lggggg Iﬁlnd_qum et all.
A A ettinger et al.
Jeremy Leng, Folsom, CA (US) 6,996,558 B2 2/2006 Deltinger et al.
. 7,096,229 B2 8/2006 Dettinger et al.
(72) Inventors: Sean Walsh, Redwood City, CA (US); 7,174341 B2 2/2007 Ghukasyan et al.
Brian Wheeler, Cherry hills, CO (US); 7,281,013 B2 10/2007 Chaudhuri et al.
Jeremy Leng, Folsom, CA ([JS) 7,359,913 Bl 4/2008 Ordonez
7,401,085 B2 7/2008 Mackay et al.
. R 7,403,975 B2 7/2008 Berkery et al.
(73) Assignee: BERTRAM CAPITAL 7526508 B2 4/2009 Tan et al.
MANAGEMENT, LLC, San Mateo, CA 7,673,291 B2 3/2010 Dias ctal.
(as) 7,836,071 B2 112010 Glowacki et al.
7,890,524 B2 2/2011 Dettinger et al.
(*) Notice: Subject. to any disclaimer,. the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 14/503,415 CN 103530538 A 1/2014
DE 112012005177 TS5 8/2014
(22) Filed: Oct. 1, 2014 (Continued)
(51) Imt.ClL Primary Examiner — Hung Q Pham
GO6F 17/30 (2006.01) (74) Attorney, Agent, or Firm — Raj Abhyanker, P.C.
(52) US.CL
CPC oo, GO6F 1730194 (2013.01) (7 ABSTRACT
(58) Field of Classification Search Disclosed are a database selection system and/or a method to
None automatically adjust a database schema based on an input
See application file for complete search history. data. The method of the database selection system includes
identifying an attribute of the input data. An optimal database
(56) References Cited typeis determined in which the input data is to be stored based

on a match between the optimal database type and the

U.S. PATENT DOCUMENTS attribute. The method selects an ideal database based on the

4.843.569 A 6/1989 Sawada et al. optimal database type from a set of distributed heterogeneous
5,091,852 A 2/1992 Tsuchida et al. databases. The method determines if an existing database
5.446,881 A 8/1995 Mammel, Jr. schema of the ideal database is optimally structured based on
g,;?;,ggi ﬁ 1%; }gg; galor_ley etal. the input data. An ideal database schema is automatically
5°806.059 A 9/1998 T:l\lx(]f}lllida et al adjusted based on the input data using a processor and a
5,926,636 A 7/1999 Lam etal. memory.
6,012,053 A 1/2000 Pant et al.
6,119,130 A 9/2000 Nguyen et al. 18 Claims, 8 Drawing Sheets
£
| T A ATTRRUTE O AT OATR |
! e
l Vil
| o
| s

IC ADJUSTING AN IDEAL DATABASE SCHEMA BASED ON THE INPUT DATA
USING A PROCESSOR AND A MEMORY

PROCESS FLOW
750

US 9,158,786 B1

Page 2
(56) References Cited 2003/0088554 Al 5/2003 Ryanetal.
2005/0172261 Al 8/2005 Yuknewicz et al.
U.S. PATENT DOCUMENTS 2005/0198059 Al 92005 Chou
2011/0238705 Al 9/2011 Baker et al.
7,895,338 B2 2/2011 Leaute et al. 2012/0036146 Al* 2/2012 Annapragada 707/764
8,078,643 B2 12/2011 Mush et al. 2012/0303555 Al 11/2012 Yakout et al.
8195602 B2 6/2012 Bakalash et al. 2013/0046799 Al 2/2013 Hale ctal.
8,321,451 B2 11/2012 Dettinger et al. 2014/0067791 Al 3/2014 Idicula et al.
8,365,138 B2 1/2013 Iborra et al. 2014/0181151 Al 6/2014 Mazoue
§442941 B2 52013 Yao etal, 2014/0258344 Al 9/2014 Felke et al.
8,601,026 B2 12/2013 Kikuchi
8,606,824 B2 12/2013 Cohen et al. FOREIGN PATENT DOCUMENTS
8,768,974 Bl 7/2014 Annapragada et al.
8,799,855 B2 8/2014 Carusi et al. EP 1367503 Al 12/2003
8,819,068 Bl 8/2014 Knote et al. WO 2014130733 Al 8/2014
8,825,502 B2 9/2014 Bormann et al.
2002/0169777 Al 11/2002 Balajel et al. * cited by examiner

US 9,158,786 B1

Sheet 1 of 8

Oct. 13, 2015

U.S. Patent

0s)
WILSAS NOILO3 T3S
3SVEVLYA 40 MIIA HHOMLAN

J

I RNOIS

-~ [|
mllllllllll_ [m————————— _W |||||||||||||| _ IJ “ “\ m _, m“
LT Y e e Vo @ LA el 0o
) {] | 1 ') (-] yom T prm T TS 1
o | o | | JSvaviva -+ I T T ;
I is ™ s ! { L8 I os | ! g3¥nLondlsnn | ! P 5 “
||||||| 4 S | [I | I H 1 . 1
I g “ ¢ @] ! T e T S !
I A I ? S I TR SR Su—— b P b
R e i T R N L R e IR
| P ' _. N b P (I ! 1 3Jsvaviva || e) e
—) 1) 1 | 1] 1 | dASvaviva ! ! 1 Seeae- PR 1
N | | s -1 s i | RNV 2ES RS B |
LoD S S S oD I N SR | | IYNOILY T3 1 b T] | — i
I I L o (. L L K FTLe) S B Vi “
...................... ! s3svav.Lva
“ _ | ! o1t | | e = ! | SNO3INIOOMILIH m
_ T 0 | YW3HOS | v A v_ | Q3LNENLSIA40 138 1
YWIHOS 3SVEY.Lvd 1vaal | I_ _3Svaviva ONUSIX3 _ . asvavlvavadl @ ‘mmmmmesmmsgmmsese-e-
- e e - -— e = - e L L -~ -~
£ Bl s -
[it 1
| J— 1
) gor < _ @
T v.1vad IdAL v
- ! 3Svav.iva VWILO 1€
O— L/ R :
oLt
NOILONNS HOLYI
I QU SR pmm— = -~ —
R J N ' k 24
T “ e, i 1| ¥0ss300ud
| viva zor T wm N } 3SvavLva | 0
[| NILSAS ¢ » swomian v € _ —
| NOILOTT3S JSvav.Lva S [— |
| 30T) % ol ~ AMOWAN
| vivainane o — oY o~ O T o
YIAYIS ¥ILNIWOD
€0} A 4
d¥3sn oL
«—> L~ 301A3Q IN3ITO

US 9,158,786 B1

Sheet 2 of 8

Oct. 13, 2015

U.S. Patent

¢ ™RNOId

0se
ANILSAS IDVHOLS
JILSV1d 40 MIIAHMIOMLIN

0T \
W3LSAS
39YHOLS 2118V AANOILILYVd T T T~
U (O))
[po----- | ot | FTTTTISCTTTTS
| | “ | 4} L) ! ¥4 '
" —> > > | 3Svavivd <] P STHOLS INTVAL
! | “ I }vNolLv13y-NON! | -AM 4O 13s |
| - Lo -4 [H | S 1
| | o e e |
| _ —\\\l ZLL ,I¢
| 90¢ ! ~ _Isvavivaivaal
L NAISASIOVHOLS OISV N, Tt S m—m——- 502
- oy e 00z oL s Y
~— !
vivd 3ZINILJO t-z-d
3ZIS I9VH0LS
|||||||||||| T
] _ L e e —————————————————— 1
I 202 ! _ d]
! H — Zic i !
| OLON vie (3DVNONYT A¥IND ISVE INWO) | i
1 LNFJWIHINDIY 1 JYNLONYLS V.Lva H L
' 3ovH0lS | I9YNONYT AYIND WHOLINN .m
A _ oer _q :
Loy - | e ¥0SS3I00Hd 1 !
IR A ¥ sy o
1 ! S, 7 1
W3LSAS le __ > YOMLIN < v } ISvaviva,
< " NoioaTEs —a - i
i _ ' | 3svavwa | | R it cel «>! e -J
' ol ! | ! A AHOWIW >
h -—em an o on an e | 4 N ———— -
i yivadtndm “ 3Tz ! aoT
! W3LSAS ! ’ H3IAEIS I LNdWNOD
1 INGWIDVNVIN 3SVEV1va !
—> Lol

L~ 30IA3A LN3ITO

US 9,158,786 B1

Sheet 3 of 8

Oct. 13, 2015

U.S. Patent

oee € 34NOId

MIIA NOILOVHILNI

€0}
/ zee ¥asn Fmmmm e |
1

d3d013A3d

[[]
I cee) viva ii o viva ol
| SNWN10Q 40 138 | reese- it ALIIGYTVOS | | ALITIEYIVOS |1
I T — T ! ove “ TVINOZIMOH | § TvOILLHIA |1
| powHEoow 1 4l A e - 4t
_— o5 [m ASEECE I 0SE i
I sanwa SNOILO3ISYIALNI 40 138 | i viva 13A3130IAd3S
Iviva 401387 N\ [
_ iy — ! 95¢
' Hi_ | e | NOILONNA
| + o | 3Lngdlsia ¥
| P smoy | e gic i
1 [} < Qd0O23y -]

! -~ 40 13s| I | vivg
- | Lywdod i

9ee s IYWIHOS Tv0I901 3svaviva i}
I sauai oot rOEOOM | i__doNolyod ! 1syi4 it
| 4013s) | - - i
— m_._.Dm*_um._.._..Q m;Dm_N_N:l;\ m_._.Dm"m._.._.< — - Oie ﬂ “
| " L 2EHIS VIR0 L ahe L_ 3NNLOILHONY ISVaYLva _ |
[iz € ﬁ _ NOILLONNA e.L rLE
e o e e e 0OYINQUOYEISEY.) 85¢ ALNGIMLSIO3 L vivad

“1. 3ONVISNI

52T /.u
_PIOMLIN, -

“ e _ . i [

1 vlvad lvwdod ' 37e i)

1 J8vav.ivda NIVYIWOQ "Al |

! -gNs ANOD3S | aNYWWOO i |

I aNOD3S 1) (78NS ONOOIS “ i [

(Rt VAN WHLIHO9 TV 1

b — S | L SISATYNY DINYNAD_ | |

| V1VQ LYWHOS NIVANOQ = VAT I " “

! -ans Lsyld |

P ISVEVIVALSHI |) LIRS ; _vianou3s | | V1va QYO THIOM g _

57 m " 0T WALSAS |

NIYWOO ONYWWQQ 1¥NLdIONOD ! - DU LTSI)

U.S. Patent Oct. 13, 2015 Sheet 4 of 8 US 9,158,786 B1

|
______ ’E QUERY COMPLEXITY !
] i 402 |
I L e]
|
1
1
1
1
\ T i
] > QUERY FREQUENCY !
T ! 404 !
1 PPN
1
1
1
1
v
i i i
______ » COMMON QUERY GEOGRAPHY :
I ! 412 !
1 _— 1
: 1 1
1 P
1
]
]
]
i mTTTTTTTTTmmmmmmmmmm—————o—oooooooog
L >i SERVER DOWN-TIME !
i i 414 |
1 L |
'- -—aen an o o» an e o : ___________________________________
| DYNAMIC ANALYSIS | :
" ALGORITHM |(- —————— -: ____________________________________
306 ! | WORKLOAD REQUEST |
L — e e Er e - e . 1] 418]
1 : 210 :
i. .,: P T TTTTTTTTTTTN :
! : | GEOGRAPHIC PROXIMITY | I
i i : 418 i |
1 1] I |
1 | I S L L L L T T 4 [}
1 O |
1
1
1
i
| LT SERVERWORKLOAD i
1 1 1
! ! 406 '
: i |
;_ _____ sl | SERVER | I PROCESSOR | |
| 1 1 INTENSIVENESS | | INTENSIVENESS | !
] o 410 ' ! 408 | !
" N P i
1 | ===sssmmsmmmsmmmsms]! tmmmmemm e ————— 1
| PN
]
|
|
]
b e e e e e o e e
|
i TEMPORAL QUERY LOAD PATTERN

|
|
|
|
420 :
|
]

EXPLODED VIEW OF DYNAMIC
ANALYSIS ALGORITHM
450

FIGURE 4

U.S. Patent Oct. 13,2015

Sheet 5 of 8 US 9,158,786 B1

: |
. 310 i
] 1
' L - !
e > INORMALIZATION| i
: Lo DATA Lo
: Lo 502 o
! e e e e e e e e e e ———] 1
]] 1
] e e e e e e ———— a4
]
]
]
]
]
]
: e mm i m e
1 1
E_ _________ o DATASIGNATURE !
. : 504 |
] H 1
L e e e e e - — a
1
1
1
1
1
1
1
1 I 1
i | PARTICULAR DATABASE
i— --------- > FORMAT DATA i
1
| STATICANALYSIS | ittt .
ALGORITHM [€------ 4
| 500 |
L G GED G G GED TOED TN T :
i mmTTTTmmmmmmm e !
:] SERVER-SIDE :
bommmmooeo » SUBROUTINE FUNCTION !
i i 508 :
] 1 _—
] 1]
| —————————————————————— o
]
]
]
]
1
L ..
: ! FIRST DATABASE !
I »! FORMAT DATA :
i | 318 |
: —————————————————————— o
1
1
1
1
1
i [TTTTmmmmmmm—m-m—---o 1
: | SECOND DATABASE 1
lemmmmmee > FORMAT DATA :
! 320 .
L e e e K

EXPLODED VIEW OF STATIC
ANALYSIS ALGORITHM
550

FIGURE 5

US 9,158,786 B1

Sheet 6 of 8

Oct. 13, 2015

U.S. Patent

9 FANOId

059
MIIA HLYd TYOILIND
AHOW3AW
vV ANV ¥0OSS3D0Hd ¥V ONISN
VLVA LNdNI IHL NO gasva [«
YINIHOS Asvav.iva Tvadl
JHL 1SNrav ATIVOILYWOLNY
209
V1vd LNdNI IHL
NO Q3ASVd AIUNLONYLS ATIVIAILLO SI 3svav.iva Tvaal
JHL 40 YINFHOS 3SVav.Lvd ONILSIX3 NV 41 ININYIL3A
909 4
s3asvav.iva
SNOINTDOHILIH AILNardLsIa
40 138 ¥ W04 3dAL Isvaviva
TYINILLO IHL NO d3sve
¥09 1 3gvavlvd Tvadi Ny 193138
3LNgIdLLY
209 A JHL ANV IdAL ISYAVLYA TIYINILJO IHL NIIMLIG
HOLVIN ¥V NO a3svg d3401S 39 O1 SI v.1va LNdNI
JHL HOIHM NI 3dAL ASYEYLYA TYNILDO NY INIWY313d
008 ~ V1va LNdNI NV 40 31N9I911Y NV AJILN3AI
00L zol ziL
"3AYIS ¥ILNdNOD INTLSAS NOILDI13S 3svavivad 3svav.ivd vaal

U.S. Patent Oct. 13, 2015 Sheet 7 of 8 US 9,158,786 B1
‘ START)
r700
IDENTIFY AN ATTRIBUTE OF AN INPUT DATA
' f702

DETERMINE AN OPTIMAL DATABASE TYPE IN WHICH THE INPUT DATA IS TO BE STORED
BASED ON A MATCH BETWEEN THE OPTIMAL DATABASE TYPE AND THE ATTRIBUTE

f704

DISTRIBUTED HETERO

SELECT AN IDEAL DATABASE BASED ON THE OPTIMAL DATABASE TYPE FROM A SET OF

GENEOUS DATABASES

A

y

r706

DETERMINE IF AN EXISTING DATABASE SCHEMA OF THE IDEAL DATABASE 1S OPTIMALLY
STRUCTURED BASED ON THE INPUT DATA

A

y

f708

AUTOMATIC ADJUSTING AN IDEAL DATABASE SCHEMA BASED ON THE INPUT DATA
USING A PROCESSOR AND A MEMORY

END

X

PROCESS FLOW

FIGURE 7

750

US 9,158,786 B1

Sheet 8 of 8

Oct. 13, 2015

U.S. Patent

32I1A3a OZ_._.%MW,_OO Old3aN3IO w mm : w—m

40 AVHOVIA DILVYNTOS

8 zes
M JOVAYIALNI AVIASIA HOSSIO0Hd I19ILY4ANOD ITIF0W
058 30IA3A 9€8 JDVAYALNI -
137avi
98 AV1dSIa TOHINOO JOVAYTLNI TYNYILXT
4 80N 0r8 03000 \

0e8
3ADIAIA 1190

»£8 AHOWAN
3191LYdNOD
31901
858 AHOWIN 9z8
NOISNVdX3 HIALNINd
958 IOV4HILNI vz
YIAITOSNYHL IINAOW NOISNVdX3 ELge)
avh H3AIFOTFY 768 3ovayTLNI
INOHALNYWS 779 NOILYOINNWINOD
IWILSAS
d3nd3s om_qmr_m_mm w>mo._ 8¢8 LINN
MOVY \ NYOS
- - /
- . - L
_z 018
- S1H0d NOISNVdX3
Q33dS HOH
Y3LNdNOD ﬁ 208
NCENER] 7 {E Ny < =—¥0883004d
o S o
/ 708 / /
908 zZ18 AHONIN 808 008 301A30
818 ¥IAYIS 301A3d JOVAELNI 29yquaLN| ONLLNGNOD 918
QYVANVLS JOVHOLS G334 MO G934S HOIH LINN AVdSIa

US 9,158,786 B1

1
DATABASE SELECTION SYSTEM AND
METHOD TO AUTOMATICALLY ADJUST A
DATABASE SCHEMA BASED ON AN INPUT
DATA

FIELD OF THE TECHNOLOGY

This disclosure relates generally to the database manage-
ment system, and more particularly, to a database selection
system and a method to automatically adjust a database
schema based on an input data.

BACKGROUND

A database may be an organized collection of data. The
database may be organized to model aspects of reality in a
way that supports processes requiring this information. For
example, organization of the database may include a model-
ing of goods in a warehouse in a way that supports finding a
particular item in a particular category.

A database management system may be a software appli-
cation that interacts with a user, other applications, and/or the
database itself to capture and analyze data. For example, the
database management system may be a software system
designed to allow the definition, creation, querying, update,
and/or administration of databases. Unfortunately, the data-
base is not generally portable across different database man-
agement systems.

SUMMARY

Disclosed are a database selection system and/or a method
to automatically adjust a database schema based on an input
data.

In one aspect, a method of a database selection system
includes identifying an attribute of an input data. An optimal
database type is determined in which the input data is to be
stored based on a match between the optimal database type
and the attribute. The method selects an ideal database based
on the optimal database type from a set of distributed hetero-
geneous databases. The method determines if an existing
database schema of the ideal database is optimally structured
based on the input data. An ideal database schema is auto-
matically adjusted based on the input data using a processor
and a memory.

The method may determine a storage requirement based on
the input data. An elastic storage system may be automati-
cally partitioned based on the storage requirement. The
method may associate a partitioned elastic storage system
with the ideal database. Further, the method may dynamically
scale a storage size of the elastic storage system based on an
additional input data.

The ideal database may be a non-relational database, an
unstructured database and/or a relational database. A uniform
query language may be applied that initially defines a data
structure in a relational manner. The data structure may be
optionally checked by the database selection system. Further,
the database selection system may be a part of a database
management system. The uniform query language may be an
omnibase query language. In addition, the ideal database may
be a non-relational database that permits a database to store
and/or access unstructured data in a manner that optimizes a
set of key-value stores to improve performance of the data-
base in an absence of table relationships.

The method may include receiving a workload data from a
database server of the database selection system. The method
may further include applying a dynamic analysis algorithm to

10

15

20

25

30

35

40

45

50

55

60

65

2

assess a query complexity, assess a query frequency, measure
a server workload for a processor intensiveness and/or a
server intensiveness, detect a common query geography, a
server down-time, a geographic proximity of a workload
request, and/or detect a temporal query load pattern. In addi-
tion, the method may re-distribute a logical schema to a
database architecture over one instance of the database server
based on an output of the dynamic analysis algorithm. The
database architecture may conform to a service level. The
database architecture may include a first database format
and/or a second database format.

Further, the method may process the logical schema from a
developer that includes an abstraction table defined by a meta
command of a conceptual command domain. The abstraction
table may include a set of rows which further includes records
and/or a set of columns which includes attributes. The
abstraction table may have a set of data values ata set of fields
occurring at a set of intersections of each row and/or each
column.

The method may analyze a set of the meta commands
defining the abstraction table to determine a first sub-domain
of the conceptual command domain associated with the first
database format and/or a second sub-domain of the concep-
tual command domain associated with the second database
format. The method may further include constraining a tran-
sitional freedom of a format in which the logical schema
and/or a portion of the logical schema may be expressed. The
transitional freedom may be constrained to the first database
format and/or the second database format. A static analysis
algorithm may be applied to measure an extent of normaliza-
tion of the logical schema, detect within the set of data values
a data signature indicative of efficiency within a particular
database format and/or detect a server-side subroutine indica-
tive of efficiency and/or operability in the first database for-
mat and/or the second database format.

The method may determine the service level associated
with a user that includes a vertical scalability and/or a hori-
zontal scalability. The method may distribute the logical
schema to the database architecture over one or more
instances of the database server based on the output of a static
analysis module. In addition, the database architecture may
conform to the service level. The database architecture may
include the first database format and/or the second database
format.

In another aspect, a method of a database selection system
includes identifying an attribute of an input data. The method
determines an optimal database type in which the input data is
to be stored based on a match between the optimal database
type and the attribute. Further, the method selects an ideal
database based on the optimal database type from a set of
distributed heterogeneous databases. The method determines
if an existing database schema of the ideal database is opti-
mally structured based on the input data. The method auto-
matically adjusts the ideal database schema based on the
input data using a processor and a memory. A storage require-
ment is determined based on the input data. The method
includes automatically partitioning an elastic storage system
based on the storage requirement. Further, the method asso-
ciates a partitioned elastic storage system with the ideal data-
base. The method dynamically scales a storage size of the
elastic storage system based on an additional input data.

In yet another aspect, a database selection system includes
a computer server of a machine learning environment. The
computer server further includes one or more computers hav-
ing instructions stored thereon that when executed cause the
one or more computers to identify an attribute of an input
data. An optimal database type is determined in which the

US 9,158,786 B1

3

input data is to be stored based on a match between the
optimal database type and the attribute. Further, an ideal
database is selected based on the optimal database type from
a set of distributed heterogeneous databases. The method
determines if an existing database schema of the ideal data-
base is optimally structured based on the input data. The
method also includes automatically adjusting the ideal data-
base schema based on the input data using a processor and a
memory.

The methods and systems disclosed herein may be imple-
mented in any means for achieving various aspects, and may
be executed in a form of a machine-readable medium
embodying a set of instructions that, when executed by a
machine, cause the machine to perform any of the operations
disclosed herein.

Other features will be apparent from the accompanying
drawings and from the detailed description that follows.

BRIEF DESCRIPTION OF THE FIGURES

Example embodiments are illustrated by way of example
and are not limited in the figures of the accompanying draw-
ings, in which like references indicate similar elements and in
which:

FIG. 1 is a network view of a database selection system
communicating with a computer server through a network,
according to one embodiment.

FIG. 2 is a network view of an elastic storage system
illustrating a partitioning of the elastic storage system based
on a storage requirement, according to one embodiment.

FIG. 3 is an interaction view illustrating re-distribution and
distribution of a logical schema to a database structure,
according to one embodiment.

FIG. 41s an exploded view of a dynamic analysis algorithm
of FIG. 3, according to one embodiment.

FIG. 5 is an exploded view of a static analysis algorithm,
according to one embodiment.

FIG. 6 is a critical path view illustrating the processes
involved in adjusting an ideal database schema using com-
puter server of FIG. 1, according to one embodiment.

FIG. 7 is a process flow diagram of automatically adjusting
an ideal database schema based on an input data, according to
one embodiment.

FIG. 8 is a schematic diagram of generic computing
devices that can be used to implement the methods and sys-
tems disclosed herein, according to one or more embodi-
ments.

Other features of the present embodiments will be apparent
from the accompanying drawings and from the detailed
description that follows.

DETAILED DESCRIPTION

Disclosed are a database selection system and/or a method
to automatically adjust a database schema based on an input
data.

In one embodiment, a method of a database selection sys-
tem 102 includes identifying an attribute (e.g., attribute data
104) of an input data 106. An optimal database type (e.g.,
optimal database type data 108) is determined in which the
input data 106 is to be stored based on a match (e.g., using
match function 110) between the optimal database type and
the attribute (e.g., attribute data 104). The method selects an
ideal database 112 based on the optimal database type (e.g.,
optimal database type data 108) from a set of distributed
heterogeneous databases 114. The method determines if an
existing database schema 116 of the ideal database 112 is

5

10

15

20

25

30

35

40

45

50

55

60

4

optimally structured based on the input data 106. An ideal
database schema 118 is automatically adjusted based on the
input data 106 using a processor 120 and a memory 122.

The method may determine a storage requirement (e.g.,
using storage requirement function 202) based on the input
data 106. An elastic storage system 206 may be automatically
partitioned based on the storage requirement. The method
may associate a partitioned elastic storage system 204 with
the ideal database 112. Further, the method may dynamically
scale a storage size (e.g., storage size data 208) of the elastic
storage system 206 based on an additional input data 210.

The ideal database 112 may be a non-relational database
128, an unstructured database 132 and/or a relational data-
base 130. A uniform query language may be applied that
initially defines a data structure 214 in a relational manner.
The data structure 214 may be optionally checked by the
database selection system 102. Further, the database selection
system 102 may be a part of a database management system
216. The uniform query language may be an omnibase query
language 212.

In addition, the ideal database 112 may be a non-relational
database 128 that permits a database 124 to store and/or
access unstructured data 213 in a manner that optimizes a set
of key-value stores 215 to improve performance of the data-
base 124 in an absence of table relationships.

The method may include receiving a workload data 302
from a database server 304 of the database selection system
102. The method may further include applying a dynamic
analysis algorithm 306 to assess a query complexity 402,
assess a query frequency 404, measure a server workload 406
for a processor intensiveness 408 and/or a server intensive-
ness 410, detect a common query geography 412, a server
down-time 414, a geographic proximity 416 of a workload
request 418, and/or detect a temporal query load pattern 420.
In addition, the method may re-distribute (e.g., using re-
distribute function 308) a logical schema 310 to a database
architecture 312 over one instance (e.g., instance data 314) of
the database server 304 based on an output (e.g., output data
316) of the dynamic analysis algorithm 306. The database
architecture 312 may conform to a service level (e.g. service
level data 350). The database architecture 312 may include a
first database format (e.g., first database format data 318)
and/or a second database format (e.g., second database format
data 320).

Further, the method may process the logical schema 310
from a developer 322 that includes an abstraction table 324
defined by a meta command 326 of a conceptual command
domain 328. The abstraction table 324 may include a set of
rows 330 which further includes records (e.g., Record 1,
Record 2, etc.) and/or a set of columns 332 which includes
attributes (e.g., Attribute 1, Attribute 2, etc.). The abstraction
table 324 may have a set of data values 334 at a set of fields
336 occurring at a set of intersections 338 of each row and/or
each column. The method may analyze a set of the meta
commands 340 defining the abstraction table 324 to deter-
mine a first sub-domain 342 of the conceptual command
domain 328 associated with the first database format (e.g.,
first database format data 318) and/or a second sub-domain
344 of the conceptual command domain 328 associated with
the second database format (e.g., second database format data
320).

The method may further include constraining a transitional
freedom (e.g., using transitional freedom algorithm 346) of a
format in which the logical schema 310 and/or a portion of the
logical schema 348 may be expressed. The transitional free-
dom (e.g., using transitional freedom algorithm 346) may be
constrained to the first database format (e.g., first database

US 9,158,786 B1

5

format data 318) and/or the second database format (e.g.,
second database format data 320).

A static analysis algorithm 500 may be applied to measure
an extent of normalization (e.g. normalization data 502) of the
logical schema 310, detect within the set of data values 334 a
data signature 504 indicative of efficiency within a particular
database format (e.g., particular database format data 506)
and/or detect a server-side subroutine indicative of efficiency
and/or operability in the first database format (e.g., first data-
base format data 318) and/or the second database format (e.g.,
second database format data 320). The method may deter-
mine the service level (e.g., service level data 350) associated
with a user 103 that includes a vertical scalability (e.g., ver-
tical scalability data 352) and/or a horizontal scalability (e.g.,
horizontal scalability data 354). The method may distribute
(e.g., using distribute function 356) the logical schema 310 to
the database architecture 312 over one or more instances (e.g.,
instance data 314) of the database server 304 based on the
output of a static analysis module 358. In addition, the data-
base architecture 312 may conform to the service level (e.g.,
service level data 350). The database architecture 312 may
include the first database format (e.g., first database format
data 318) and/or the second database format (e.g., second
database format data 320).

In another embodiment, a method of a database selection
system 102 includes identifying an attribute (e.g., attribute
data 104) of an input data 106. The method determines an
optimal database type in which the input data 106 is to be
stored based on a match (e.g., using match function 110)
between the optimal database type (e.g., optimal database
type data 108) and the attribute (e.g., attribute data 104).
Further, the method selects an ideal database 112 based on the
optimal database type from a set of distributed heterogeneous
databases 114. The method determines if an existing database
schema 116 of the ideal database 112 is optimally structured
based on the input data 106. The method automatically
adjusts the ideal database schema 118 based on the input data
106 using a processor 120 and a memory 122. A storage
requirement is determined based on the input data 106. The
method includes automatically partitioning an elastic storage
system 206 based on the storage requirement. Further, the
method associates a partitioned elastic storage system 204
with the ideal database 112. The method dynamically scales a
storage size (e.g., storage size data 208) of the elastic storage
system 206 based on an additional input data 210.

In yet another embodiment, a database selection system
102 includes a computer server 100 of a machine learning
environment. The computer server 100 of the machine learn-
ing environment further includes one or more computers hav-
ing instructions stored thereon that when executed cause the
one or more computers to identity an attribute (e.g., attribute
data 104) of an input data 106. An optimal database type (e.g.,
optimal database type data 108) is determined in which the
input data 106 is to be stored based on a match (e.g., match
function 110) between the optimal database type and the
attribute (e.g., attribute data 104). Further, an ideal database
112 is selected based on the optimal database type (e.g.,
optimal database type data 108) from a set of distributed
heterogeneous databases 114. The method determines if an
existing database schema 116 of the ideal database 112 is
optimally structured based on the input data 106. The method
also includes automatically adjusting the ideal database
schema 118 based on the input data 106 using a processor 120
and a memory 122.

FIG.1is anetwork view of a database selection system 102
communicating with a computer server 100 through a net-
work 126, according to one embodiment. Particularly, FIG. 1

5

10

15

20

25

30

40

45

50

55

60

65

6

illustrates a network view of database selection system 150, a
computer server 100, a client device 101, a database selection
system 102, a user 103, an attribute data 104, an input data
106, an optimal database type data 108, a match function 110,
an ideal database 112, a set of distributed heterogeneous
databases 114, an existing database schema 116, an ideal
database schema 118, a processor 120, a memory 122, a
database 124, a network 126, a non-relational database 128, a
relational database 130 and an unstructured database 132.
The computer server 100 may be a software (e.g., a program,
an application) and/or a hardware that provides data to other
computers while managing resources and services of the net-
work 126, while handling requests from different computers
to access said resources, according to one embodiment.

The client device 101 (e.g., a mobile phone, a tablet, a
computer) may be a computing device that accesses a service
made available by a computer server 100. The database selec-
tion system 102 may be a system that choose dispersive
database similar to the characteristics of the target. A user 103
may be an individual with the client device 101, according to
one embodiment. The attribute data 104 may be a specifica-
tion that defines a property and/or characteristics of an object,
element and/or file, according to one embodiment.

The input data 106 may be an information given to the
computer server 100 either automatically or manually,
according to one embodiment. The optimal database type
data 108 may define the list of data types that are available for
defining columns (e.g., set of columns 332). The match func-
tion 110 may be a set of instructions that performs a specific
task of comparing two or more sets of collected data (e.g.,
input data 106). The ideal database 112 may be a model which
includes collection of information organized to provide effi-
cient retrieval. A set of distributed heterogeneous databases
114 may be an automated and/or semi-automated system for
the integration of heterogeneous, disparate database manage-
ment systems to present a user 103 with a single, unified
query interface, according to one embodiment.

An existing database schema 116 may be a current logical
view of entire database 124. The ideal database schema 118
may be a complete logical view of entire database 124. The
processor 120 may be a central unit of the computer contain-
ing the logic circuitry to perform all the basic instructions of
a computer program, according to one embodiment. The
memory 122 may be a device used to store data or programs
(e.g., sequences of instructions) on a temporary or permanent
basis for use in an electronic digital computer. A database 124
may be a collection of information that is organized so that it
can easily be accessed, managed, and/or updated, according
to one embodiment.

A network 126 may be a group of computing devices (e.g.,
hardware and software) that are linked together through com-
munication channels (e.g., wired, wireless) to facilitate com-
munication and resource-sharing among a wide range of
users. A non-relational database 128 may be a database that
does not incorporate the table and/or key model. A relational
database 130 may be a collective set of multiple data sets
organized by tables, records and/or columns, according to one
embodiment. An unstructured database 132 may be a generic
label for describing any data that is not in a database, accord-
ing to one embodiment.

FIG. 1 illustrates a computer server 100 including a data-
base 124 coupled with a memory 122 and a processor 120,
according to one embodiment. The computer server 100 may
be communicatively coupled with the database selection sys-
tem 102 through the network 126. The user 103 with a client
device 101 may be connected to the computer server 100
through the network 126. The input data 106 including

US 9,158,786 B1

7

attribute data 104 may be associated with the database selec-
tion system 102. The optimal database type data 108 may be
coupled with the attribute data 104 ofthe input data 106 based
on the match function 110. The ideal database schema 118
may be associated with the input data 106. The optimal data-
base type data 108 may be coupled to the ideal database 112
and set of distributed heterogeneous databases 114. The exist-
ing database schema 116 may be associated to the ideal data-
base 112 and the ideal database schema 118, according to one
embodiment.

Incircle ‘1’, the attribute data 104 of the input data 106 may
be identified by the database selection system 102. In circle
2’, the optimal database type (e.g., optimal database type
data 108) storing the input data 106 may be determined based
on the match (using the match function 110). In circle ‘3’, an
ideal database 112 may be selected from the set of distributed
heterogeneous databases 114 based on the optimal database
type data 108. In circle ‘4’, it may be determined that the
existing database schema 116 of the ideal database 112 based
on the input data 106 is optimally structured. In circle °5°, the
ideal database schema 118 may be automatically adjusted
based on the input data 106 using the processor 120 and/or the
memory 122 of the computer server 100, according to one
embodiment.

FIG. 2 is a network view of elastic storage system 250
illustrating a partitioning of an elastic storage system 206
based on the storage requirement, according to one embodi-
ment. Particularly, FIG. 2 builds on FIG. 1 that illustrates a
storage requirement function 202, a partitioned elastic stor-
age system 204, an optimize function 205, an elastic storage
system 206, a storage size data 208, an additional input data
210, an omnibase query language 212, unstructured data 213,
a data structure 214, a set of key-value stores 215 and a
database management system 216. FIG. 2 differs from FIG. 1
as it may describe automatically partitioning data in an elastic
storage system 206 based on a storage requirement.

The storage requirement function 202 may be a set of
instructions that determines the storage capacity based on the
inputdata 106 (of FIG. 1), according to one embodiment. The
partitioned elastic storage system 204 may be a divided data
of an elastic storage system 206. The optimize function 205
may be a set of instructions that performs a specific task of
enhancing a set of key-value stores 215. An elastic storage
system 206 may be a flexible storage system to accumulate
the data (e.g. input data 106), according to one embodiment.

A storage size data 208 may be the data that informs about
the capacity of the system to collect the data (e.g. input data
106). The additional input data 210 may be a supplementary
data apart from the actual input data 106. An omnibase query
language 212 may be a computer language (e.g., a program)
which provides a uniform interface to database 124 (of FIG.
1) that stores information about the objects. The unstructured
data 213 may be describing any data that is not in a database
124. The data structure 214 may be a collection of data items
stored in the memory 122. The set of key-value stores 215
may be a collection of key-value stores that allows the devel-
oper 322 (of FIG. 3) to store schema-less data. This data may
consist of a string which represents the key and the actual data
which is considered to be the value in the “key-value relation-
ship”. The database management system 216 may be a soft-
ware system that uses a standard method of cataloging,
retrieving, and running queries on data. The database man-
agement system 216 may manage incoming data, organize it,
and provides ways for the data to be modified or extracted by
the user 103, according to one embodiment.

FIG. 2 illustrates the storage requirement function 202 may
be coupled to the input data 106 and the elastic storage system

10

15

20

25

30

35

40

45

50

55

60

65

8

206. The partitioned elastic storage system 204 of the elastic
storage system 206 may be associated with the ideal database
112 (of FIG. 1). The storage size data 208 of the elastic
storage system 206 may be associated with the additional
input data 210. The unstructured data 213 may be associated
with the database 124 of the computer server 100 and the set
of’key-value stores 215 which is coupled to the non-relational
database 128 of the ideal database 112. The data structure 214
may be coupled to the database selection system 102 of the
database management system 216. The uniform query lan-
guage (e.g., omnibase query language 212) may be associated
with the data structure 214, according to one embodiment.

In circle ‘6°, the storage requirement (e.g., using a storage
requirement function 202) may be determined based on the
input data 106. In circle “7°, the elastic storage system 206
may be automatically partitioned based on the storage
requirement. In circle ‘8’, a partitioned elastic storage system
204 may be associated with the ideal database 112 (of FIG. 1).
In circle ‘9°, the storage size (e.g., the storage size data 208)
of' the elastic storage system 206 may be scaled dynamically
based on the additional input data 210. In circle ‘10°, the
uniform query language (e.g., omnibase query language 212)
may be applied to define the data structure 214. In circle ‘117,
the data structure 214 may be optionally checked by the
database selection system 102 of the database management
system 216. In circle ‘12°, the non-relational database 128
may allow the database 124 to store and access unstructured
data 213 in a way that optimizes (e.g., using optimize function
205) the set of key-value stores 215 to boost the performance
of the database 124, according to one embodiment.

FIG. 3 is an interaction view 380 illustrating the distribu-
tion and/or the re-distribution of the logical schema 310,
according to one embodiment. Particularly, FIG. 3 illustrates
aworkload data 302, a database server 304, a dynamic analy-
sis algorithm 306, a re-distribute function 308, a logical
schema 310, a database architecture 312, an instance data
314, an output data 316, a first database format data 318, a
second database format data 320, a developer 322, an abstrac-
tion table 324, a meta command 326, a conceptual command
domain 328, a set of rows 330, a set of columns 332, a set of
data values 334, a set of fields 336, a set of intersections 338,
a set of meta commands 340, a first sub-domain 342, a second
sub-domain 344, a transitional freedom algorithm 346, a por-
tion of the logical schema 348, a service level data 350, a
vertical scalability data 352, a horizontal scalability data 354,
a distribute function 356 and a static analysis module 358,
according to one embodiment.

The workload data 302 may be the total number of requests
made by the user 103 and applications of a system. The
database server 304 may be a computer program that provides
database services to other computer programs. The dynamic
analysis algorithm 306 may be the set of steps applied on the
system to relocate the abstraction table 324 based on the
characteristics and/or attributes of the abstraction table 324 or
feature of the set of fields 336. The dynamic analysis algo-
rithm 306 may be applied to evaluate a query (e.g., query
complexity 402 or query frequency 404), measure workload
and/or detect a common query geography 412, server down-
time 414, geographic proximity 416 and/or temporal query
load pattern 420 (of FIG. 4), according to one embodiment.

The re-distribute function 308 may be the set of instruc-
tions that perform a specific task of re-allocating some data
associated with the data file utilizing the logical schema 310.
The logical schema 310 may be a data model of a specific
problem domain expressed in terms of a particular data man-
agement technology. The database architecture 312 may be a
set of specifications, rules, and processes that dictate how data

US 9,158,786 B1

9

is stored in a database 124 (of FIG. 1) and how data is
accessed by components of a system. The instance data 314
may be used to describe a complete database environment
including table structure, stored procedures and/or other
functionality, according to one embodiment.

The output data 316 of the dynamic analysis algorithm 306
may be the data generated by a computer after performing set
of steps applied to evaluate the query, measure workload,
detect the common query geography 412, the server down-
time 414, the geographic proximity 416 of a workload request
418, and/or detect a temporal query load pattern 420 (of FIG.
4). The first database format data 318 may be a first file used
to store the data (e.g., input data 106) in series of tables, table
fields and/or field data values, according to one embodiment.

The second database format data 320 may be a second file
used to store the data (e.g., input data 106) in series of tables,
table fields and/or field data values. The developer 322 may be
aperson or an individual who creates code to access or change
data in the data warehouse and interacts with the logical
schema 310. The abstraction table 324 may be a set of data
elements (e.g., values) using a model of vertical columns
(e.g., set of columns 332) and horizontal rows (e.g., set of
rows 330). The meta command 326 may be acommand which
is issued by means of a meta key sequence. The conceptual
command domain 328 may refer to the description of an
attribute’s (e.g., attribute data 104 of the input data 106)
allowed values. The set of rows 330 may be a group of
horizontal records (e.g., Record 1, Record 2, etc.) that repre-
sents structured data and/or unstructured data 213 in the
abstraction table 324, according to one embodiment.

The set of columns 332 may be a group of vertical records
(e.g., Attribute 1, Attribute 2, etc.) that represents structured
data and/or unstructured data 213 in the abstraction table 324.
The set of data values 334 may be a collection of data vari-
ables set aside by the data entities and all its attributes (e.g.,
attribute data 104). The set of fields 336 may be a collection
of components that provide structure for the abstraction table
324. The set of intersections 338 may be the junction of the set
of'rows 330 and set of columns 332, according to one embodi-
ment.

The set of meta commands 340 may be the group of com-
mands which are issued by means of a meta key sequence.
The first sub-domain 342 may be the first subset of the con-
ceptual command domain 328. The second sub-domain 344
may be the second subset of the conceptual command domain
328, according to one embodiment.

The transitional freedom algorithm 346 may provide a
degree of change between states during an operation of the
algorithm such that the algorithm permits changes within a
threshold area of the logical schema 310. The portion of the
logical schema 348 may be a part of a data model of a specific
problem domain expressed in terms of a particular data man-
agement technology. The service level data 350 may be the
data that measures the performance of a system. The vertical
scalability data 352 may be the addition of resources to a
single system node, such as a single computer or network
station to increase the capacity of existing hardware or soft-
ware. Vertical scalability (e.g., vertical scalability data 352)
may provide more shared resources for the operating system
and applications, according to one embodiment.

The horizontal scalability data 354 may be the ability to
connect multiple hardware or software entities so that they
work as a single logical unit. The distribute function 356 may
be a set of instructions that perform a specific task of allotting
a data model to the database architecture 312. The static
analysis module 358 may be a unit that performs analysis
without actually executing programs. Static analysis may be

10

15

20

25

30

35

40

45

50

55

60

65

10

performed on static code i.e., code that is not running during
the analysis process, according to one embodiment.

FIG. 3 illustrates the database server 304 of the database
selection system 102 may be connected to the workload data
302 and the output data 316 of the dynamic analysis algorithm
306. The abstraction table 324 may be coupled to the meta
command 326 of the set of meta commands 340 present in the
conceptual command domain 328. The set of meta commands
340 may be coupled to the first sub-domain 342 of the con-
ceptual command domain 328 associated with the first data-
base format data 318 and second sub-domain 344 associated
with the second database format data 320. The developer 322
may interact with the logical schema 310. The logical schema
310 may be associated with the database architecture 312.
The transitional freedom algorithm 346 may be coupled with
the logical schema 310. The instance (e.g., instance data 314)
of the database server 304 may be associated with the data-
base architecture 312 and the output data 316 through the
network 126. The service level data 350 may be coupled to the
database architecture 312, according to one embodiment.

In circle “13°, workload data 302 may be received from the
database server 304 of the database selection system 102. In
circle ‘14°, the logical schema 310 is re-distributed (e.g.,
using re-distribute function 308) to a database architecture
312 over an instance (e.g., instance data 314) of the database
server 304 based on the output (e.g., output data 316) of the
dynamic analysis algorithm 306. In circle 15°, database
architecture 312 may comply in actions to the service level
(e.g., service level data 350). In circle ‘16, logical schema
310 from the developer 322 consisting of the abstractiontable
324 defined by the meta command 326 of the conceptual
command domain 328 may be processed. In circle ‘17°, the
set of the meta commands 340 defining the abstraction table
324 may be analyzed to determine the first sub-domain 342 of
the conceptual command domain 328 associated with the first
database format data 318 and the second sub-domain 344 of
the conceptual command domain 328 associated with the
second database format data 320.

In circle “18’, the transitional freedom algorithm 346 of a
format may be constrained consisting of the logical schema
310 and/or the portion of the logical schema 348. In circle ‘19,
the service level (e.g., service level data 350) including ver-
tical scalability (e.g., vertical scalability data 352) and/or
horizontal scalability (e.g., horizontal scalability data 354)
associated with the user 103 may be determined. In circle
20°, the logical schema 310 may be distributed (e.g., using
distribute function 356) to the database architecture 312 over
aninstance (e.g., instance data 314) of the database server 304
based on the output of static analysis module 358, according
to one embodiment.

FIG. 4 is an exploded view of dynamic analysis algorithm
306 of FIG. 3. Particularly, FIG. 4 illustrates a query com-
plexity 402, a query frequency 404, a server workload 406, a
processor intensiveness 408, a server intensiveness 410, a
common query geography 412, a server down-time 414, a
geographic proximity 416, a workload request 418 and a
temporal query load pattern 420, according to one embodi-
ment.

The query complexity 402 may be the complexity of a
problem or an algorithm expressed in terms of the decision
tree model. The query frequency 404 may include frequently
occurring words or concepts in the sources. The server work-
load 406 may be the amount of work performed by the com-
puter server 100 (of FIG. 1) in a given period of time. The
processor intensiveness 408 may refer to the number of pro-
cessor cycles consumed executing the queries. The server
intensiveness 410 may refer to the number of processor cycles

US 9,158,786 B1

11

consumed executing the queries across a series of computing
devices and/or logical computing devices forming a server.
The common query geography 412 may be a geospatial
region in which queries are more frequent based on an analy-
sis of typical queries that might be expected across physical
locations of a set of users utilizing the computer server 100.
The server down-time 414 may refer to the periods when the
system is unavailable. The geographic proximity 416 may be
a measurement of how close and/or how far something is in
relation to another geographic location when generating que-
ries of the database selection system 102 (of FIG. 1).

The workload request 418 may be a set of instructions that
may request different functions to be performed for executing
a particular operation or series of operations. The temporal
query load pattern 420 may govern a time based sequence that
determines a correlation between inputs of queries into the
database 124 through the database selection system 102 (of
FIG. 1). FIG. 4 illustrates the dynamic analysis algorithm 306
may be applied to assess query complexity 402 and/or query
frequency 404, measure server workload 406 for processor
intensiveness 408 and/or server intensiveness 410, detect a
common query geography 412, a server down-time 414, a
geographic proximity 416 of a workload request 418 and/or a
temporal query load pattern 420, according to one embodi-
ment.

FIG. 5 is an exploded view of static analysis algorithm 550.
Particularly, the FIG. 5 illustrates normalization data 502,
data signature 504, particular database format data 506, a
server-side subroutine function 508. The normalization data
502 may include data obtained by dividing the database 124
into two or more tables and defining relationships between the
tables. The data signature 504 may be a function that can take
arow (from the set of rows 330) and generate some derivative
integer for that row. If the two rows (from the set of rows 330)
are similar they would generate very close integers, if the
rows (from the set of rows 330) are different, they would
generate distant integers. If there are identical rows (in the set
of rows 330) (of the FIG. 3), then same data signature 504
may be generated. The particular database format data 506
may be the actual data that is specially organized for rapid
search and retrieval by a computer. The server-side subroutine
function 508 may be a set of instructions designed to perform
a frequently used operation within a program by the computer
server 100 (of FIG. 1) in a client-server relationship in the
computer networking. FIG. 5 illustrates that the static analy-
sis algorithm 550 may be applied to calculate an extent of
normalization data 502 of the logical schema 310, detect a
data signature 504 within the set of data values 334, detect a
server-side subroutine (e.g., using server-side subroutine
function 508) and/or operability in the first database format
data 318 and the second database format data 320 (of FIG. 3),
according to one embodiment.

FIG. 6 is a critical path view 650 of adjusting the ideal
database schema 118, according to embodiment. In operation
600, database selection system 102 may identify an attribute
(e.g., attribute data 104) of an input data 106. In operation
602, the database selection system 102 may determine an
optimal database type (e.g., optimal database type data 108)
in which the input data 106 is to be stored based on a match
between the optimal database type (e.g., optimal database
type data 108) and the attribute (e.g., attribute data 104). In
operation 604, the ideal database 112 may be selected based
on the optimal database type (e.g., optimal database type data
108) from a set of distributed heterogeneous databases 114. In
operation 606, database selection system 102 may determine
if an existing database schema 116 of the ideal database 112
is optimally structured based on the input data 106. In opera-

10

15

20

25

30

35

40

45

50

55

60

65

12

tion 608, the database selection system 102 may automati-
cally adjust the ideal database schema 118 based on the input
data 106 using a processor 120 and a memory 122 of the
computer server 100 (of FIG. 1), according to one embodi-
ment.

FIG. 7 is a process tlow 750 of selecting an ideal database
112 based on the optimal database type (e.g., optimal data-
base type data 108) from a set of distributed heterogeneous
databases 114, according to at least one embodiment. In
operation 700, a database selection system 102 may identify
an attribute (e.g., attribute data 104) of an input data 106. In
operation 702, an optimal database type (e.g., optimal data-
base type data 108) may be determined in which the input data
106 is to be stored based on a match between the optimal
database type (e.g., optimal database type data 108) and the
attribute (e.g., attribute data 104). In operation 704, the data-
base selection system 102 may select the ideal database 112
based on the optimal database type (e.g., optimal database
type data 108) from a set of distributed heterogeneous data-
bases 114. In operation 706, the database selection system
102 may determine if an existing database schema 116 of the
ideal database 112 is optimally structured based on the input
data 106. In operation 708, the ideal database schema 118
may be automatically adjusted based on the input data 106
using a processor 120 and a memory 122 (of FI1G. 1), accord-
ing to one embodiment.

FIG. 8 is a schematic diagram of generic computing device
890 that can be used to implement the methods and systems
disclosed herein, according to one or more embodiments. The
computing device 800 may represent various forms of digital
computers, such as laptops, desktops, workstations, personal
digital assistants, servers, blade servers, mainframes, and/or
other appropriate computers. The mobile device 830 may
represent various forms of mobile devices, such as smart-
phones, camera phones, personal digital assistants, cellular
telephones, and other similar mobile devices. The compo-
nents shown here, their connections, couples, and relation-
ships, and their functions, are meant to be exemplary only,
and are not meant to limit the embodiments described and/or
claimed.

The computing device 800 may include a processor 802, a
memory 804, a storage device 806, a high-speed interface 808
coupled to the memory 804 and a plurality of high speed
expansion ports 810, and a low speed interface 812 coupled to
alow-speed bus 814 and a storage device 806. In one embodi-
ment, each of the components heretofore may be inter-
coupled using various buses, and may be mounted on a com-
mon motherboard and/or in other manners as appropriate.
The processor 802 may process instructions for execution in
the computing device 800, including instructions stored in the
memory 804 and/or on the storage device 806 to display a
graphical information for a GUI on an external input/output
device, such as a display unit 816 coupled to the high-speed
interface 808. In other embodiments, multiple processors
and/or multiple buses may be used, as appropriate, along with
multiple memories and/or types of memory. Also, a plurality
of computing devices may be coupled with, with each device
providing portions of the necessary operations (e.g., as a
server bank, a group of blade servers, and/or a multi-proces-
sor system).

The memory 804 may be coupled to the computing device
800. In one embodiment, the memory 804 may be a volatile
memory. In another embodiment, the memory 804 may be a
non-volatile memory. The memory 804 may also be another
form of computer-readable medium, such as a magnetic and/
or an optical disk. The storage device 806 may be capable of
providing mass storage for the computing device 800. In one

US 9,158,786 B1

13

embodiment, the storage device 806 may include at least one
of a floppy disk device, a hard disk device, an optical disk
device, a tape device, a flash memory and/or other similar
solid state memory device. In another embodiment, the stor-
age device 806 may be an array of the devices in a computer-
readable medium previously mentioned heretofore, com-
puter-readable medium, such as, and/or an array of devices,
including devices in a storage area network and/or other con-
figurations.

A computer program may include instructions that, when
executed, perform one or more methods, such as those
described above. The instructions may be stored in at least
one of the memory 804, the storage device 806, a memory
coupled to the processor 802, and/or a propagated signal. The
high-speed interface 808 may manage bandwidth-intensive
operations for the computing device 800, while the low speed
interface 812 may manage lower bandwidth-intensive opera-
tions. Such allocation of functions is exemplary only. In one
embodiment, the high-speed interface 808 may be coupled to
at least one of the memory 804, the display unit 816 (e.g.,
through a graphics processor and/or an accelerator), and to
the plurality of high speed expansion ports 810, which may
accept various expansion cards. In the embodiment, the low
speed interface 812 may be coupled to at least one of the
storage device 806 and the low-speed bus 814. The low-speed
bus 814 may include a wired and/or wireless communication
port (e.g., a Universal Serial Bus (“USB”), a Bluetooth® port,
an Ethernet port, and/or a wireless Ethernet port). The low-
speed bus 814 may also be coupled to at least one of scan unit
828, a printer 826, a mouse 824, and a networking device
(e.g., a switch and/or a router) through a network adapter.

The computing device 800 may be implemented in a num-
ber of different forms, as shown in the figure. In one embodi-
ment, the computing device 800 may be implemented as a
standard server 818 and/or a group of such servers. In another
embodiment, the computing device 800 may be implemented
as part of a rack server system 822. In yet another embodi-
ment, the computing device 800 may be implemented as a
general computer 820 such as a laptop or desktop computer.
Alternatively, a component from the computing device 800
may be combined with another component in a mobile device
830. In one or more embodiments, an entire system may be
made up of a plurality of computing devices and/or a plurality
of computing devices coupled to a plurality of mobile
devices.

In one embodiment, the mobile device 830 may include at
least one of a mobile compatible processor 832, a mobile
compatible memory 834, and an input/output device such as
a mobile display 846, a communication interface 852, and a
transceiver 838, among other components. The mobile device
830 may also be provided with a storage device, such as a
microdrive or other device, to provide additional storage. In
one embodiment, at least one of the components indicated
heretofore are inter-coupled using various buses, and several
of the components may be mounted on a common mother-
board.

The mobile compatible processor 832 may execute instruc-
tions in the mobile device 830, including instructions stored
in the mobile compatible memory 834. The mobile compat-
ible processor 832 may be implemented as a chipset of chips
that include separate and multiple analog and digital proces-
sors. The mobile compatible processor 832 may provide, for
example, for coordination of the other components of the
mobile device 830, such as control of user interfaces, appli-
cations run by the mobile device 830, and wireless commu-
nication by the mobile device 830.

10

15

20

25

30

35

40

45

50

55

60

65

14

The mobile compatible processor 832 may communicate
with a user through the control interface 836 and the display
interface 844 coupled to a mobile display 846. In one embodi-
ment, the mobile display 846 may be at least one of a Thin-
Film-Transistor Liquid Crystal Display (“TFT LCD”), an
Organic Light Emitting Diode (“OLED”) display, and
another appropriate display technology. The display interface
844 may include appropriate circuitry for driving the mobile
display 846 to present graphical and other information to a
user. The control interface 836 may receive commands from
a user and convert them for submission to the mobile com-
patible processor 832. In addition, an external interface 842
may be provide in communication with the mobile compat-
ible processor 832, so as to enable near area communication
of the mobile device 830 with other devices. External inter-
face 842 may provide, for example, for wired communication
in some embodiments, or for wireless communication in
other embodiments, and multiple interfaces may also be used.

The mobile compatible memory 834 may be coupled to the
mobile device 830. The mobile compatible memory 834 may
be implemented as at least one of a volatile memory and a
non-volatile memory. The expansion memory 858 may also
be coupled to the mobile device 830 through the expansion
interface 856, which may include, for example, a Single In
Line Memory Module (“SIMM?”) card interface. The expan-
sion memory 858 may provide extra storage space for the
mobile device 830, or may also store an application or other
information for the mobile device 830. Specifically, the
expansion memory 858 may include instructions to carry out
the processes described above. The expansion memory 858
may also include secure information. For example, the expan-
sion memory 858 may be provided as a security module for
the mobile device 830, and may be programmed with instruc-
tions that permit secure use of the mobile device 830. In
addition, a secure application may be provided on the SIMM
card, along with additional information, such as placing iden-
tifying information on the SIMM card in a non-hackable
manner.

The mobile compatible memory 834 may include at least
one of a volatile memory (e.g., a flash memory) and a non-
volatile memory (e.g., a non-volatile random-access memory
(“NVRAM”™)). In one embodiment, a computer program
includes a set of instructions that, when executed, perform
one or more methods. The set of instructions may be stored on
atleast one of the mobile compatible memory 854, the expan-
sion memory 858, a memory coupled to the mobile compat-
ible processor 832, and a propagated signal that may be
received, for example, over the transceiver 838 and/or the
external interface 842.

The mobile device 830 may communicate wirelessly
through the communication interface 852, which may include
a digital signal processing circuitry. The communication
interface 852 may provide for communications using various
modes and/or protocols, such as, at least one of: a Global
System for Mobile Communications (“GSM”) protocol, a
Short Message Service (“SMS”) protocol, an Enhanced Mes-
saging System (“EMS”) protocol, a Multimedia Messaging
Service (“MMS”) protocol, a Code Division Multiple Access
(“CDMA”) protocol, Time Division Multiple Access
(“TDMA”) protocol, a Personal Digital Cellular (“PDC”)
protocol, a Wideband Code Division Multiple Access
(“WCDMA”) protocol, a CDMA2000 protocol, and a Gen-
eral Packet Radio Service (“GPRS”) protocol. Such commu-
nication may occur, for example, through the radio-frequency
transceiver. In addition, short-range communication may
occur, such as using a Bluetooth®, Wi-Fi, and/or other such
transceiver 838. In addition, a GPS (“Global Positioning Sys-

US 9,158,786 B1

15

tem”) receiver module may provide additional navigation-
related and location-related wireless data to the mobile device
830, which may be used as appropriate by a software appli-
cation running on the mobile device 830.

The mobile device 830 may also communicate audibly
using an audio codec 840, which may receive spoken infor-
mation from a user and convert it to usable digital informa-
tion. The audio codec 840 may likewise generate audible
sound for a user, such as through a speaker (e.g., in a handset
of'the mobile device 830). Such a sound may include a sound
from a voice telephone call, a recorded sound (e.g., a voice
message, a music files, etc.) and may also include a sound
generated by an application operating on the mobile device
830.

The mobile device 830 may be implemented in a number of
different forms, as shown in the figure. In one embodiment,
the mobile device 830 may be implemented as a smartphone
848. In another embodiment, the mobile device 830 may be
implemented as a personal digital assistant (“PDA”). In yet
another embodiment, the mobile device, 830 may be imple-
mented as a tablet device 850.

An example embodiment will now be described. John may
use a database (e.g., SQL, MySQL, MongoDB) to organize
and collect data. John’s preferred database may be organized
to model aspects of reality in a way that supports processes
requiring this information in John’s business such as during
peak Christmas season demand. For example, John’s
employer Fun Toys, Inc. may use the database to model of
toys in the Seattle warehouse in a way that supports finding a
particular toy item in a particular category.

John may use a database management system (e.g.,
Microsoft, MSDE) to capture and analyze data. For example,
John’s preferred database management system may be a soft-
ware system designed to allow the definition, creation, que-
rying, update, and/or administration of databases. Thank-
fully, John’s database may be portable across different
database management systems as described in FIGS. 1-8
herein.

Various embodiments of the systems and techniques
described here can be realized in at least one of a digital
electronic circuitry, an integrated circuitry, a specially
designed application specific integrated circuits (“ASICs™), a
piece of computer hardware, a firmware, a software applica-
tion, and a combination thereof. These various embodiments
can include embodiment in one or more computer programs
that are executable and/or interpretable on a programmable
system including at least one programmable processor, which
may be special or general purpose, coupled to receive data
and instructions from, and to transmit data and instructions to,
a storage system, at least one input device, and at least one
output device.

These computer programs (also known as programs, soft-
ware, software applications, and/or code) include machine-
readable instructions for a programmable processor, and can
be implemented in a high-level procedural and/or object-
oriented programming language, and/or in assembly/ma-
chine language. As used herein, the terms “machine-readable
medium” and/or “computer-readable medium” refers to any
computer program product, apparatus and/or device (e.g.,
magnetic discs, optical disks, memory, and/or Programmable
Logic Devices (“PLDs™)) used to provide machine instruc-
tions and/or data to a programmable processor, including a
machine-readable medium that receives machine instructions
as a machine-readable signal. The term “machine-readable
signal” refers to any signal used to provide machine instruc-
tions and/or data to a programmable processor.

15

25

35

40

45

55

65

16

To provide for interaction with a user, the systems and
techniques described here may be implemented on a comput-
ing device having a display device (e.g., a cathode ray tube
(“CRT”) and/or liquid crystal display (“LCD”’) monitor) for
displaying information to the user and a mouse by which the
user can provide input to the computer. Other kinds of devices
can be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback (e.g., visual feedback, auditory feedback,
and/or tactile feed-back) and input from the user can be
received in any form, including acoustic, speech, and/or tac-
tile input.

The systems and techniques described here may be imple-
mented in a computing system that includes at least one of a
back end component (e.g., as a data server), a middleware
component (e.g., an application server), a front end compo-
nent (e.g., a client computer having a graphical user interface,
and/or a Web browser through which a user can interact with
an embodiment of the systems and techniques described
here), and a combination thereof. The components of the
system may also be coupled through a communication net-
work.

The communication network may include at least one of'a
local area network (“LAN™) and a wide area network
(“WAN”) (e.g., the Internet). The computing system can
include at least one of a client and a server. In one embodi-
ment, the client and the server are remote from each other and
interact through the communication network.

A number of embodiments have been described. Neverthe-
less, it will be understood that various modifications may be
made without departing from the spirit and scope of the
claimed invention. In addition, the logic flows depicted in the
figures do not require the particular order shown, or sequen-
tial order, to achieve desirable results. In addition, other steps
may be provided, or steps may be eliminated, from the
described flows, and other components may be added to, or
removed from, the described systems. Accordingly, other
embodiments are within the scope of the following claims.

It may be appreciated that the various systems, methods,
and apparatus disclosed herein may be embodied in a
machine-readable medium and/or a machine accessible
medium compatible with a data processing system (e.g., a
computer system), and/or may be performed in any order.

The structures and modules in the figures may be shown as
distinct and communicating with only a few specific struc-
tures and not others. The structures may be merged with each
other, may perform overlapping functions, and may commu-
nicate with other structures not shown to be connected in the
figures. Accordingly, the specification and/or drawings may
be regarded in an illustrative rather than a restrictive sense.

The process flows and flow diagrams depicted in the fig-
ures do not require the particular order shown, or sequential
order, to achieve desirable results. In addition, others may be
provided, or steps may be eliminated from the described
flows, and other components may be added to or removed
from the depictions.

The invention claimed is:

1. A computer memory having instructions executed by a
processor to perform a method of a database selection system,
the method comprising:

identifying an attribute of an input data;

determining an optimal database type in which the input

datais to be stored based on a match between the optimal
database type and the attribute;

selecting an ideal database based on the optimal database

type from a set of distributed heterogeneous databases;

US 9,158,786 B1

17

determining if an existing database schema of the ideal
database is optimally structured based on the input data;
automatically adjusting an ideal database schema based on
the input data using the processor and the memory;
determining a storage requirement based on the input data;
automatically partitioning an elastic storage system based
on the storage requirement;
associating a partitioned elastic storage system with the
ideal database; and
dynamically scaling a storage size of the elastic storage
system based on an additional input data.
2. The computer memory of claim 1, wherein the method
further comprises:
wherein the ideal database is any one of a non-relational
database, an unstructured database, and a relational
database,
wherein a uniform query language is applied that initially
defines a data structure in a relational manner, and
wherein the data structure is optionally checked by the
database selection system,
wherein the database selection system is part of a database
management system, and
wherein the uniform query language is an omnibase query
language.
3. The computer memory of claim 1, wherein the method
further comprises:
wherein the ideal database is a non-relational database that
permits a database to store and access unstructured data
in a manner that optimizes a set of key-value stores to
improve performance of the database in an absence of
table relationships.
4. The computer memory of claim 1, wherein the method
further comprises:
receiving a workload data from a database server of the
database selection system;
applying a dynamic analysis algorithm to at least one:
assess a query complexity,
assess a query frequency,
measure a server workload for a processor intensiveness
and a server intensiveness,
detect a common query geography,
a server down-time,
a geographic proximity of a workload request, and
detect a temporal query load pattern; and
re-distributing a logical schema to a database architecture
over at least one instance of the database server based on
an output of the dynamic analysis algorithm, the data-
base architecture conforming to a service level and the
database architecture comprising at least one of a first
database format and a second database format.
5. The computer memory of claim 4 further comprising:
processing the logical schema from a developer comprised
of an abstraction table defined by a meta command of a
conceptual command domain,
wherein the abstraction table comprising a set of rows
comprising records and a set of columns comprising
attributes, the abstraction table having a set of data val-
ues at a set of fields occurring at a set of intersections of
each row and each column;
analyzing a set of the meta commands defining the abstrac-
tion table to determine a first sub-domain of the concep-
tual command domain associated with the first database
format and a second sub-domain of the conceptual com-
mand domain associated with the second database for-
mat;
constraining a transitional freedom of a format in which at
least one of the logical schema and a portion of the

20

25

35

40

45

50

55

65

18

logical schema may be expressed, the transitional free-
dom constrained to the first database format and the
second database format; and

applying a static analysis algorithm to:

measure an extent of normalization of the logical schema,
detect within the set of data values a data signature
indicative of efficiency within a particular database for-
mat, and detect a server-side subroutine indicative of at
least one of efficiency and operability in the first data-
base format and the second database format.

6. The computer memory of claim 5 further comprising:

determining the service level associated with a user com-
prising at least one of a vertical scalability and a hori-
zontal scalability; and

distributing the logical schema to the database architecture
over one or more instances of the database server based
on the output of a static analysis module, the database
architecture conforming to the service level and the data-
base architecture comprising at least one of the first
database format and the second database format.

7. A method of a database selection system, comprising:

identifying an attribute of an input data;

determining an optimal database type in which the input
datais to be stored based on a match between the optimal
database type and the attribute;

selecting an ideal database based on the optimal database
type from a set of distributed heterogeneous databases;

determining if an existing database schema of the ideal
database is optimally structured based on the input data;

automatically adjusting an ideal database schema based on
the input data using a processor and a memory;

determining a storage requirement based on the input data;

automatically partitioning an elastic storage system based
on the storage requirement;

associating a partitioned elastic storage system with the
ideal database; and

dynamically scaling a storage size of the elastic storage
system based on an additional input data.

8. The method of claim 7:

wherein the ideal database is any one of a non-relational
database, an unstructured database, and a relational
database,

wherein a uniform query language is applied that initially
defines a data structure in a relational manner, and
wherein the data structure is optionally checked by the
database selection system,

wherein the database selection system is part of a database
management system, and

wherein the uniform query language is an omnibase query
language.

9. The method of claim 8:

wherein the ideal database is the non-relational database
that permits a database to store and access unstructured
data in a manner that optimizes a set of key-value stores
to improve performance of the database in an absence of
table relationships.

10. The method of claim 8 further comprising:

receiving a workload data from a database server of the
database selection system;

applying a dynamic analysis algorithm to at least one:

assess a query complexity,

assess a query frequency,

measure a server workload for a processor intensiveness
and a server intensiveness,

detect a common query geography,

a server down-time,

a geographic proximity of a workload request, and

US 9,158,786 B1

19

detect a temporal query load pattern; and

re-distributing a logical schema to a database architecture
over at least one instance of the database server based on
an output of the dynamic analysis algorithm, the data-
base architecture conforming to a service level and the
database architecture comprising at least one of a first
database format and a second database format.

11. The method of claim 10 further comprising:

processing the logical schema from a developer comprised
of an abstraction table defined by a meta command of a
conceptual command domain,

wherein the abstraction table comprising a set of rows
comprising records and a set of columns comprising
attributes, the abstraction table having a set of data val-
ues at a set of fields occurring at a set of intersections of
each row and each column;

analyzing a set of the meta commands defining the abstrac-
tion table to determine a first sub-domain of the concep-
tual command domain associated with the first database
format and a second sub-domain of the conceptual com-
mand domain associated with the second database for-
mat;

constraining a transitional freedom of a format in which at
least one of the logical schema and a portion of the
logical schema may be expressed, the transitional free-
dom constrained to the first database format and the
second database format; and

applying a static analysis algorithm to:

measure an extent of normalization of the logical schema,

detect within the set of data values a data signature indica-
tive of efficiency within a particular database format,
and

detect a server-side subroutine indicative of at least one of
efficiency and operability in the first database format and
the second database format.

12. The method of claim 11 further comprising:

determining the service level associated with a user com-
prising at least one of a vertical scalability and a hori-
zontal scalability; and

distributing the logical schema to the database architecture
over one or more instances of a server based on the
output of a static analysis module, the database archi-
tecture conforming to the service level and the database
architecture comprising at least one of the first database
format and the second database format.

13. A system of a database selection system comprising:

a computer server of a machine learning environment:

the computer server including one or more computers hav-
ing instructions stored thereon that when executed cause
the one or more computers:

to identity an attribute of an input data,

to determine an optimal database type in which the input
dataisto be stored based on a match between the optimal
database type and the attribute,

to select an ideal database based on the optimal database
type from a set of distributed heterogeneous databases,

to determine if an existing database schema of the ideal
database is optimally structured based on the input data,

to automatically adjust the ideal database schema based on
the input data using a processor and a memory,

to determine a storage requirement based on the input data,

to automatically partition an elastic storage system based
on the storage requirement,

to associate a partitioned elastic storage system with the
ideal database, and

to dynamically scale a storage size of the elastic storage
system based on an additional input data.

w

10

20

25

30

35

40

45

50

55

60

65

20

14. The system of claim 13 wherein the computer server

including one or more computers having instructions stored
thereon that when executed cause the one or more computers
to further:

wherein the ideal database is any one of a non-relational
database, an unstructured database, and a relational
database,

wherein a uniform query language is applied that initially
defines a data structure in a relational manner, and
wherein the data structure is optionally checked by the
database selection system,

wherein the database selection system is part of a database
management system, and

wherein the uniform query language is an omnibase query
language.

15. The system of claim 13:

wherein the ideal database is a non-relational database that
permits a database to store and access unstructured data
in a manner that optimizes a set of key-value stores to
improve performance of the database in an absence of
table relationships.

16. The system of claim 13 wherein the computer server

including one or more computers having instructions stored
thereon that when executed cause the one or more computers
to further:

receive a workload data from a database server of the
database selection system,

apply a dynamic analysis algorithm to at least one:

assess a query complexity,

assess a query frequency,

measure a server workload for a processor intensiveness
and a server intensiveness,

detect a common query geography,

a server down-time,

a geographic proximity of a workload request, and

detect a temporal query load pattern; and

re-distribute a logical schema to a database architecture
over at least one instance of the database server based on
an output of the dynamic analysis algorithm, the data-
base architecture conforming to a service level and the
database architecture comprising at least one of a first
database format and a second database format.

17. The system of claim 16 wherein the computer server

including one or more computers having instructions stored
thereon that when executed cause the one or more computers
to further:

process the logical schema from a developer comprised of
an abstraction table defined by a meta command of a
conceptual command domain,

wherein the abstraction table comprising a set of rows
comprising records and a set of columns comprising
attributes, the abstraction table having a set of data val-
ues at a set of fields occurring at a set of intersections of
each row and each column,

analyze a set of the meta commands defining the abstrac-
tion table to determine a first sub-domain of the concep-
tual command domain associated with a first database
format and a second sub-domain of the conceptual com-
mand domain associated with the second database for-
mat,

constrain the transitional freedom of a format in which at
least one of the logical schema and a portion of the
logical schema may be expressed, the transitional free-
dom constrained to the first database format and the
second database format, and

apply a static analysis algorithm to:

measure an extent of normalization of the logical schema,

US 9,158,786 B1

21

detect within the set of data values a data signature indica-
tive of efficiency within a particular database format,
and

detect a server-side subroutine indicative of at least one of

efficiency and operability in the first database format and
the second database format.

18. The system of claim 17 wherein the computer server
including one or more computers having instructions stored
thereon that when executed cause the one or more computers
to further:

determine the service level associated with a user compris-

ing at least one of a vertical scalability and a horizontal
scalability, and

distribute the logical schema to the database architecture

over one or more instances of a server based on the
output of a static analysis module, the database archi-
tecture conforming to the service level and the database
architecture comprising at least one of the first database
format and the second database format.

#* #* #* #* #*

10

20

22

